Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687867

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear. METHODS: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells. RESULTS: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1ß. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation. CONCLUSIONS: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.

2.
Int J Biol Sci ; 20(1): 200-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164169

RESUMEN

TGF-ß/Smad3 signaling plays a critical role in type 2 diabetes (T2D) and type 2 diabetic nephropathy (T2DN), but treatment by specifically targeting Smad3 remains unexplored. To develop a new Smad3-targeted therapy for T2D and T2DN, we treated db/db mice at the pre-diabetic or established diabetic stage with a pharmacological Smad3 inhibitor SIS3. The therapeutic effect and mechanisms of anti-Smad3 treatment on T2D and T2DN were investigated. We found that anti-Smad3 treatment on pre-diabetic db/db mice largely attenuated both T2D and T2DN by markedly reducing blood glucose levels, and inhibiting the elevated serum creatinine, microalbuminuria, and renal fibrosis and inflammation. Unexpectedly, although SIS3 treatment on the established diabetic db/db mice inhibited T2DN but did not significantly improve T2D. Mechanistically, we uncovered that inhibition of T2DN in SIS3-treated db/db mice was associated with effectively restoring the balance of TGF-ß/Smad signaling by inhibiting Smad3 while increasing Smad7, thereby suppressing Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation via lncRNA Erbb4-IR and LRN9884-dependent mechanisms. We also revealed that inhibition of islet ß cell injury by preventing the loss of islet Pax 6 could be the mechanism through which the pre-diabetic treatment, rather than the late SIS3 treatment on db/db mice significantly improved the T2D phenotype.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Estado Prediabético , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Diabetes Mellitus Tipo 2/genética , Estado Prediabético/complicaciones , Estado Prediabético/patología , Inflamación , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis , Proteína smad3/genética , Proteína smad3/metabolismo , Riñón/patología
4.
Front Immunol ; 14: 1264447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022581

RESUMEN

"Cytokine storm" is common in critically ill COVID-19 patients, however, mechanisms remain largely unknown. Here, we reported that overexpression of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular death and the release of HMGB1, one of the damage-associated molecular patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and production of IL-6, TNF-α, and MCP-1 via a Mincle-Syk/NF-κB-dependent mechanism. This was further confirmed in vitro that overexpression of SARS-CoV-2 N protein caused the release of HMGB1 from injured tubular cells under high AGE conditions, which resulted in M1 macrophage activation and production of proinflammatory cytokines via a Mincle-Syk/NF-κB-dependent mechanism. This was further evidenced by specifically silencing macrophage Mincle to block HMGB1-induced M1 macrophage activation and production of IL-6, TNF-α, and MCP-1 in vitro. Importantly, we also uncovered that treatment with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db mice. Mechanistically, we found that quercetin treatment significantly inhibited the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory macrophage while promoting reparative M2 macrophage responses by suppressing Mincle-Syk/NF-κB signaling in vivo and in vitro. In conclusion, SARS-CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-dependent M1 macrophage activation. Inhibition of this pathway may be a mechanism through which quercetin inhibits COVID-19-associated AKI.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Diabetes Mellitus , Proteína HMGB1 , Ratones , Animales , Humanos , FN-kappa B/metabolismo , Proteína HMGB1/metabolismo , SARS-CoV-2/metabolismo , Quercetina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Activación de Macrófagos , Interleucina-6/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Lesión Renal Aguda/metabolismo , Diabetes Mellitus/metabolismo
5.
Mol Ther Nucleic Acids ; 33: 180-190, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37449045

RESUMEN

Transforming growth factor ß (TGF-ß)/Smad3 plays a vital role in hypertensive cardiac fibrosis. The long non-coding RNA (lncRNA) Erbb4-IR is a novel Smad3-dependent lncRNA that mediates kidney fibrosis. However, the role of Erbb4-IR in hypertensive heart disease remains unexplored and was investigated in the present study by ultrasound-microbubble-mediated silencing of cardiac Erbb4-IR in hypertensive mice induced by angiotensin II. We found that chronic angiotensin II infusion induced hypertension and upregulated cardiac Erbb4-IR, which was associated with cardiac dysfunction, including a decrease in left ventricle ejection fraction (LVEF) and LV fractional shortening (LVFS) and an increase in LV mass. Knockdown of cardiac Erbb4-IR by Erbb4-IR short hairpin RNA (shRNA) gene transfer effectively improved the angiotensin II-induced deterioration of cardiac function, although blood pressure was not altered. Furthermore, silencing cardiac Erbb4-IR also inhibited angiotensin II-induced progressive cardiac fibrosis, as evidenced by reduced collagen I and III, alpha-smooth muscle actin (α-SMA), and fibronectin accumulation. Mechanistically, improved hypertensive cardiac injury by specifically silencing cardiac Erbb4-IR was associated with increased myocardial Smad7 and miR-29b, revealing that Erbb4-IR may target Smad7 and miR-29b to mediate angiotensin II-induced hypertensive cardiac fibrosis. In conclusion, Erbb4-IR is pathogenic in angiotensin II (Ang II)-induced cardiac remodeling, and targeting Erbb4-IR may be a novel therapy for hypertensive cardiovascular diseases.

7.
Nat Commun ; 14(1): 1794, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002229

RESUMEN

Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-ß1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neutrófilos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microambiente Tumoral
8.
Int J Biol Sci ; 19(2): 521-536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632461

RESUMEN

Neuropeptide Y (NPY) is produced by the nerve system and may contribute to the progression of CKD. The present study found the new protective role for NPY in AKI in both patients and animal models. Interestingly, NPY was constitutively expressed in blood and resident kidney macrophages by co-expressing NPY and CD68+ markers, which was lost in patients and mice with AKI-induced by cisplatin. Unexpectedly, NPY was renoprotective in AKI as mice lacking NPY developed worse renal necroinflammation and renal dysfunction in cisplatin and ischemic-induced AKI. Importantly, NPY was also a therapeutic agent for AKI because treatment with exogenous NPY dose-dependently inhibited cisplatin-induced AKI. Mechanistically, NPY protected kidney from AKI by inactivating M1 macrophages via the Y1R-NF-κB-Mincle-dependent mechanism as deleting or silencing NPY decreased Y1R but increased NF-κB-Mincle-mediated M1macrophage activation and renal necroinflammation, which were reversed by addition of NPY or by silencing Mincle but promoted by blocking Y1R with BIBP 3226. Thus, NPY is renoprotective and may be a novel therapeutic agent for AKI. NPY may act via Y1R to protect kidney from AKI by blocking NF-κB-Mincle-mediated M1 macrophage activation and renal necroinflammation.


Asunto(s)
Lesión Renal Aguda , FN-kappa B , Neuropéptido Y , Receptores de Neuropéptido Y , Animales , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Cisplatino/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Neuropéptido Y/uso terapéutico , Receptores de Neuropéptido Y/metabolismo
9.
Mol Ther ; 31(2): 344-361, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36514292

RESUMEN

Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Diabetes Mellitus Experimental , Ratones , Animales , SARS-CoV-2 , COVID-19/complicaciones , Quercetina/farmacología , Diabetes Mellitus Experimental/complicaciones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Ratones Endogámicos , Puntos de Control del Ciclo Celular
10.
Sci Adv ; 8(40): eabn5535, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206343

RESUMEN

Tumor innervation is a common phenomenon with unknown mechanism. Here, we discovered a direct mechanism of tumor-associated macrophage (TAM) for promoting de novo neurogenesis via a subset showing neuronal phenotypes and pain receptor expression associated with cancer-driven nocifensive behaviors. This subset is rich in lung adenocarcinoma associated with poorer prognosis. By elucidating the transcriptome dynamics of TAM with single-cell resolution, we discovered a phenomenon "macrophage to neuron-like cell transition" (MNT) for directly promoting tumoral neurogenesis, evidenced by macrophage depletion and fate-mapping study in lung carcinoma models. Encouragingly, we detected neuronal phenotypes and activities of the bone marrow-derived MNT cells (MNTs) in vitro. Adoptive transfer of MNTs into NOD/SCID mice markedly enhanced their cancer-associated nocifensive behaviors. We identified macrophage-specific Smad3 as a pivotal regulator for promoting MNT at the genomic level; its disruption effectively blocked the tumor innervation and cancer-dependent nocifensive behaviors in vivo. Thus, MNT may represent a precision therapeutic target for cancer pain.


Asunto(s)
Dolor en Cáncer , Neoplasias Pulmonares , Animales , Dolor en Cáncer/metabolismo , Dolor en Cáncer/patología , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuronas , Análisis de Secuencia de ARN
11.
Int J Biol Sci ; 18(14): 5489-5502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147472

RESUMEN

Diabetic nephropathy (DN) is a major cause of end-stage kidney disease, where TGF-ß1/Smad signaling plays an important role in the disease progression. Our previous studies demonstrated a combination of Traditional Chinese Medicine derived Smad7 agonist Asiatic Acid (AA) and Smad3 inhibitor Naringenin (NG), AANG, effectively suppressed the progression of renal fibrosis in vivo. However, its implication in type-2 diabetic nephropathy (T2DN) is still unexplored. Here, we detected progressive activation of Smad3 but reduction of Smad7 in db/db mice during T2DN development. Therefore, we optimized the dosage and the combination ratio of AANG to achieve a better rebalancing Smad3/Smad7 signaling for treatment of T2DN. Unexpectedly, preventive treatment with combined AANG from week 4 before the development of diabetes and T2DN effectively protected against the onset of T2DN. In contract, these inhibitory effects were lost when db/db mice received the late AANG treatment from 12-24 weeks. Surprisingly, preventive treatment with AANG ameliorated not only T2DN but also the primary disease type-2 diabetes (T2D) with relative normal levels of fasting blood glucose and HbA1c, and largely improving metabolic abnormalities especially on insulin insensitivity and glucose tolerance in db/db mice. Mechanistically, AANG effectively prevented both Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation in the diabetic kidney in vivo and advanced glycation end-products (AGE) stimulated tubular epithelial mTEC cells in vitro. More importantly, we uncovered that preventive treatment with AANG effectively protected against diabetic-associated islet injury via restoring the ß cell development in db/db mice. Taken together, we discovered that the early treatment with combined AANG can effectively protect against the development of T2D and T2DN via mechanism associated with protection against Smad3-depenedent islet injury.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Insulinas , Animales , Glucemia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fibrosis , Hemoglobina Glucada/metabolismo , Insulinas/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
12.
Biomaterials ; 288: 121730, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995622

RESUMEN

Transforming growth factor ß (TGF-ß) is a well-known key mediator for the progression and metastasis of lung carcinoma. However, cost-effective anti-TGF-ß therapeutics for lung cancer remain to be explored. Specifically, the low efficacy in drug delivery greatly limits the clinical application of small molecular inhibitors of TGF-ß. In the present study, specific inhibitor of Smad3 (SIS3) is developed into a self-carried nanodrug (SCND-SIS3) using the reprecipitation method, which largely improves its solubility and bioavailability while reduces its nephrotoxicity. Compared to unmodified-SIS3, SCND-SIS3 demonstrates better anti-cancer effects through inducing tumor cell apoptosis, inhibiting angiogenesis, and boosting NK cell-mediated immune responses in syngeneic Lewis Lung Cancer (LLC) mouse model. Better still, it could achieve comparable anti-cancer effect with just one-fifth the dose of unmodified-SIS3. Mechanistically, RNA-sequencing analysis and cytokine array results unveil a TGF-ß/Smad3-dependent immunoregulatory landscape in NK cells. In particular, SCND-SIS3 promotes NK cell cytotoxicity by ameliorating Smad3-mediated transcriptional inhibition of Ndrg1. Furthermore, improved NK cell cytotoxicity by SCND-SIS3 is associated with higher expression of activation receptor Nkp46, and suppressed levels of Trib3 and TSP1 as compared with unmodified-SIS3. Taken together, SCND-SIS3 possesses superior anti-cancer effects with enhanced bioavailability and biocompatibility, therefore representing as a novel therapeutic strategy for lung carcinoma with promising clinical potential.


Asunto(s)
Carcinoma , Neoplasias Pulmonares , Nanopartículas , Animales , Carcinoma/tratamiento farmacológico , Línea Celular Tumoral , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Nanopartículas/uso terapéutico , Piridinas/farmacología , Pirroles/uso terapéutico , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
13.
Mol Ther ; 30(9): 3017-3033, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35791881

RESUMEN

Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor ß1 (TGF-ß1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-ß/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-ß/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Clopidogrel/metabolismo , Clopidogrel/farmacología , Clopidogrel/uso terapéutico , Fibrosis , Riñón , Enfermedades Renales/etiología , Enfermedades Renales/genética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética
14.
Adv Sci (Weinh) ; 9(18): e2200668, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484716

RESUMEN

Previously, this study demonstrates the critical role of myeloid specific TLR4 in macrophage-mediated progressive renal injury in anti-glomerular basement membrane (anti-GBM) crescentic glomerulonephritis (cGN); however, the underlying mechanism remains largely unknown. In this study, single-cell RNA sequencing (scRNA-seq), pseudotime trajectories reconstruction, and motif enrichment analysis are used, and macrophage diversity in anti-GBM cGN under tight regulation of myeloid-TLR4 is uncovered. Most significantly, a myeloid-TLR4 deletion-induced novel reparative macrophage phenotype (Nr4a1+ Ear2+) with significant upregulated anti-inflammatory and tissue repair-related signaling is discovered, thereby suppressing the M1 proinflammatory responses in anti-GBM cGN. This is further demonstrated in vitro that deletion of TLR4 from bone marrow-derived macrophages (BMDMs) induces the Nr4a1/Ear2-expressing anti-inflammatory macrophages while blocking LPS-stimulated M1 proinflammatory responses. Mechanistically, activation of the Nr4a1/Ear2-axis is recognized as a key mechanism through which deletion of myeloid-TLR4 promotes the anti-inflammatory macrophage differentiation in vivo and in vitro. This is confirmed by specifically silencing macrophage Nr4a1 or Ear2 to reverse the anti-inflammatory effects on TLR4 deficient BMDMs upon LPS stimulation. In conclusion, the findings decode a previously unidentified role for a myeloid-TLR4 dependent Nr4a1/Ear2 negative feedback mechanism in macrophage-mediated progressive renal injury, implying that activation of Nr4a1-Ear2 axis can be a novel and effective immunotherapy for anti-GBM cGN.


Asunto(s)
Glomerulonefritis , Receptor Toll-Like 4 , Antiinflamatorios , Neurotoxina Derivada del Eosinófilo/metabolismo , Membrana Basal Glomerular , Glomerulonefritis/genética , Humanos , Lipopolisacáridos , Macrófagos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Fenotipo , Análisis de Secuencia de ARN
15.
Theranostics ; 12(1): 379-395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34987651

RESUMEN

Rationale: Poor ß cell proliferation is one of the detrimental factors hindering islet cell replacement therapy for patients with diabetes. Smad3 is an important transcriptional factor of TGF-ß signaling and has been shown to promote diabetes by inhibiting ß cell proliferation. Therefore, we hypothesize that Smad3-deficient islets may be a novel cell replacement therapy for diabetes. Methods: We examined this hypothesis in streptozocin-induced type-1 diabetic mice and type-2 diabetic db/db mice by transplanting Smad3 knockout (KO) and wild type (WT) islets under the renal capsule, respectively. The effects of Smad3KO versus WT islet replacement therapy on diabetes and diabetic kidney injury were examined. In addition, RNA-seq was applied to identify the downstream target gene underlying Smad3-regulated ß cell proliferation in Smad3KO-db/db versus Smad3WT-db/db mouse islets. Results: Compared to Smad3WT islet therapy, treatment with Smad3KO islets produced a much better therapeutic effect on both type-1 and type-2 diabetes by significantly lowering serum levels of blood glucose and HbA1c and protected against diabetic kidney injuries by preventing an increase in serum creatinine and the development of proteinuria, mesangial matrix expansion, and fibrosis. These were associated with a significant increase in grafted ß cell proliferation and blood insulin levels, resulting in improved glucose intolerance. Mechanistically, RNA-seq revealed that compared with Smad3WT-db/db mouse islets, deletion of Smad3 from db/db mouse islets markedly upregulated E2F3, a pivotal regulator of cell cycle G1/S entry. Further studies found that Smad3 could bind to the promoter of E2F3, and thus inhibit ß cell proliferation via an E2F3-dependent mechanism as silencing E2F3 abrogated the proliferative effect on Smad3KO ß cells. Conclusion: Smad3-deficient islet replacement therapy can significantly improve both type-1 and type-2 diabetes and protect against diabetic kidney injury, which is mediated by a novel mechanism of E2F3-dependent ß cell proliferation.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Factor de Transcripción E2F3/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína smad3/metabolismo , Animales , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Mol Ther ; 30(2): 881-897, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34628054

RESUMEN

Plasma levels of neuropeptide Y (NPY) are elevated in patients with acute myocardial infarction (AMI), but its role in AMI remains unclear, which was examined here in NPY wild-type/knockout (WT/KO) mice treated with/without exogenous NPY and its Y1 receptor antagonist (Y1Ra) BIBP 3226. We found that AMI mice lacking NPY developed more severe AMI than WT mice with worse cardiac dysfunction, progressive cardiac inflammation and fibrosis, and excessive apoptosis but impairing angiogenesis. All of these changes were reversed when the NPY KO mice were treated with exogenous NPY in a dose-dependent manner. Interestingly, treatment with NPY also dose dependently attenuated AMI in WT mice, which was blocked by BIBP 3226. Phenotypically, cardiac NPY was de novo expressed by infiltrating macrophages during the repairing or fibrosing process in heart-failure patients and AMI mice. Mechanistically, NPY was induced by transforming growth factor (TGF)-ß1 in bone marrow-derived macrophages and signaled through its Y1R to exert its pathophysiological activities by inhibiting p38/nuclear factor κB (NF-κB)-mediated M1 macrophage activation while promoting the reparative M2 phenotype in vivo and in vitro. In conclusion, NPY can attenuate AMI in mice. Inhibition of cardiac inflammation and fibrosis while enhancing angiogenesis but reducing apoptosis may be the underlying mechanisms through which NPY attenuates cardiac remodeling and deterioration of function following AMI.


Asunto(s)
Infarto del Miocardio , Neuropéptido Y , Animales , Humanos , Ratones , Ratones Noqueados , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Neuropéptido Y/sangre , Neuropéptido Y/genética , Remodelación Ventricular
17.
Adv Sci (Weinh) ; 9(1): e2101235, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34791825

RESUMEN

Cancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution. MMT cells (MMTs) are observed in non-small-cell lung carcinoma (NSCLC) associated with CAF abundance and patient mortality. By fate-mapping study, RNA velocity, and pseudotime analysis, existence of novel macrophage-lineage-derived CAF subset in the TME of Lewis lung carcinoma (LLC) model is confirmed, which is directly transited via MMT from M2-TAM in vivo and bone-marrow-derived macrophages (BMDM) in vitro. Adoptive transfer of BMDM-derived MMTs markedly promote CAF formation in LLC-bearing mice. Mechanistically, a Smad3-centric regulatory network is upregulated in the MMTs of NSCLC, where chromatin immunoprecipitation sequencing(ChIP-seq) detects a significant enrichment of Smad3 binding on fibroblast differentiation genes in the macrophage-lineage cells in LLC-tumor. More importantly, macrophage-specific deletion and pharmaceutical inhibition of Smad3 effectively block MMT, therefore, suppressing the CAF formation and cancer progression in vivo. Thus, MMT may represent a novel therapeutic target of CAF for cancer immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Proteína smad3/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Miofibroblastos/patología , Transducción de Señal/genética , Proteína smad3/genética , Microambiente Tumoral/genética
18.
Int J Biol Sci ; 17(14): 3911-3922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671208

RESUMEN

Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-ß/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-ß/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1ß, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-ß/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-ß/Smad3 signaling.


Asunto(s)
Proteína C-Reactiva/metabolismo , Fibrosis/prevención & control , Eliminación de Gen , Inflamación/prevención & control , Enfermedades Renales/prevención & control , Proteína smad3/genética , Obstrucción Ureteral/prevención & control , Animales , Línea Celular , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Ratas
19.
Cell Mol Life Sci ; 78(19-20): 6721-6734, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34568976

RESUMEN

Myeloid cells and TLR4 play a critical role in acute kidney injury. This study investigated the regulatory role and mechanisms of myeloid TLR4 in experimental anti-glomerular basement membrane (GBM) glomerulonephritis (GN). Anti-GBM GN was induced in tlr4flox/flox and tlr4flox/flox-lysM-cre mice by intravenous injection of the sheep anti-mouse GBM antibody. Compared to control mice, conditional disruption of tlr4 from myeloid cells, largely macrophages (> 85%), suppressed glomerular crescent formation and attenuated progressive renal injury by lowering serum creatinine and 24-h urine protein excretion while improving creatinine clearance. Mechanistically, deletion of myeloid tlr4 markedly inhibited renal infiltration of macrophages and T cells and resulted in a shift of infiltrating macrophages from F4/80+iNOS+ M1 to F4/80+CD206+ M2 phenotype and inhibited the upregulation of renal proinflammatory cytokines IL-1ß and MCP-1. Importantly, deletion of myeloid tlr4 suppressed T cell-mediated immune injury by shifting Th1 (CD4+IFNγ+) and Th17 (CD4+IL-17a+) to Treg (CD4+CD25+FoxP3+) immune responses. Transcriptome analysis also revealed that disrupted myeloid TLR4 largely downregulated genes involving immune and cytokine-related pathways. Thus, myeloid TLR4 plays a pivotal role in anti-GBM GN by immunological switching from M1 to M2 and from Th1/Th17 to Treg and targeting myeloid TLR4 may be a novel therapeutic strategy for immune-mediated kidney diseases.


Asunto(s)
Membrana Basal/metabolismo , Glomerulonefritis/metabolismo , Glomérulos Renales/metabolismo , Células Mieloides/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Citocinas/metabolismo , Femenino , Riñón/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células TH1/metabolismo , Células Th17/metabolismo
20.
Front Physiol ; 12: 684236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054586

RESUMEN

Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-ß (TGF-ß) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-ß may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-ß in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-ß and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-ß and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...